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Abstract. This study presentsan evaluation and comparison of visible,

near-infrared,passiveand activemicrowaveobservationsfor vegetationcharacterization,

on a global basis, for a year, with spatial resolution compatible with climatological

studies (0.25°x0.25°). Visible and near-infrared observationsalong with the NDVI

come from AVHRR. An atlas of monthly-mean microwaveland surfaceemissivities

between19 and 85 CI'iz has beencalculated from SSM/| observationsfor a year,

suppressingthe atn,or ,heric contamination problemsencounteredwith the useof simple

channelcombinations. The active microwave measurements are provided by the ERS-1

scatterometer backscattering coefficients at 5.25 GHz. The capacity to discriminate

between vegetation types and to detect the vegetation phenology is assessed in the

context of a vegetation classification obtained from in situ observations. A clustering

technique derived from the Kohonen topological maps is used to merge the three data

sets and interpret their relative variations with surface characteristics.

NDVI varies with vegetation density, but saturates for arid grassland and for

forested areas. Spurious seasonal cycles and large spatial variability in several areas

suggest that atmospheric contamination (cloud, water vapor, ozone, and aerosols)

and/or solar zenith angle drift still modulate the NDVI signal. Passive and active

microwave observations are primary sensitive to overall vegetation structure: They

respond to absorption, emission and scattering by vegetation elements, including woody

parts. Backscattering coefficients from ERS-1, measured with an accuracy of 5%,

are not sensitive to atmospheric variations and exhibit good potential for vegetation

discrimination with -,_10 dB dynamic from rain forest to arid grassland. Passive

microwave measurements also show some ability to characterize vegetation, but are less

sensitive than active measurements. However, passive observations show sensitivity

to the underlying surface wetness that enables detection of wetlands even in densely

vegetated areas.

This study illustrates overall features of vegetation co_'er characterized by the



suite of data. Merging the data sets using clustering techniquescapitalize on the

complementarystrengths of the instruments for vegetationdiscrimination and shows

promising potential for land covercharacterizationon a global basis.



I. Introduction

Land cover physical characteristics are crucial boundary conditions for climate

models that influence the exchanges of energy, water, and carbon between the biosphere

and the atmosphere. Land surface parameterization for GCMs relies on global fields of

terrestrial biaphy.sical parameters estimated from land cover characterizations derived

from in situ surveys [Matthews, 1983] or from vegetation indices calculated from satellite

data in the visible and near-infra,-d [Seller° et al., 1994; 1996]. The Normalized

Difference Vegetation Index (NDVI) calculated from the red and near-infrared channels

of the Advanced Very High Resolution Radiometer (AVHRR) has been extensively used

for vegetation studies. The availability of the NDVI data for two decades and its high

horizontal spatial resolution (up to 1 km) have motivated a large number of studies from

regional to global scales [e. g. Tucker, 1985; Myneni et al., 1998; DeFries et al., 1999],

relating NDVI to vegetation biophysical properties. However, there are growing concerns

about the ability of the NDVI to quantitatively represent the vegetation properties and

NDVI sensitivity to atmospheric factors and instrument calibration is debated [Gutman,

1999].

Lower resolution space-borne sensors operating in the microwave part of the

spectrum have also shown some ability to characterize the land surface at spatial

resolutions compatible with climatological applications. For global vegetation

characterization, these instruments have, to date, triggered less interest than their

visible and near:infrared counterparts."

Passive microwave observations from the Scanning Multichannel Microwave

Radiometer (SMMR) on board NIMBUS 7 starting in 1978 and from the Special Sensor

Microwave/Imager (SSM/I) on board DMSP satellites since 1987 have been used in

vegetation studies, especially in conjunction with NDVI responses. Most studies have

focused on the use of simple indices like the microwave vegetation index (MVI) which

is based on the polarization difference at 37 GHz [e. g., Choudhu W and Tucker, 1987;



Justzce et al.. 1989]. However, as noted by several authors [Tucker, 1989; Kerr and

Ajoku. 1993], atmospheric effects, especially cloud cover, is responsible for a large part

of the 37 GHz polarization difference, casting doubt on the interpretation of simple

indices solely in terms of surface properties. Recently, Prigent et al. [1997, 1998]

calculated land surface microwave emissivities from SSM/I observations by removing

contributions from the atmosphere, clouds and rain using ancillary satellite data. The

results show promising correspondences between geographical and seasonal patterns of

the emissivities and global land surface characteristics.

Multi-year acti,,e microwave data over the entire globe are a new resource available

since July 1991 wit l the launch of the European Remote Sensing satellite ERS-1

carrying a wind sca:terometer operating at 5.25 GHz (C-band). Scatterometers

provide measuremei ts of the backscattering coefficient of the observed surface.

Primarily designed for estimating wind speed and direction over the ocean, space-borne

scatterometers have also shown good correlation with vegetation dynamics at global

and regional scales. Preliminary results were obtained with 3 months worth of data

from the scatterometer on board Seasat-A in 1978 [Kennett and Li, 1989] and were

later confirmed by several authors t sing ERS-1 and 2 data [Kerr and Magnani, 1993;

_'t'isman et al., 1993; Frison and Mougin, 1996 a, b].

The objective of this study is to compare the ability of these different measurements

to characterize the spatial distribution of the vegetation and its phenology and to

examine how complementary strengths of the instruments can be used to obtain

maximum information about vegetation physical characteristics on a global basis. The

three types of observations analyzed here cover a large portion of the electromagnetic

spectrum: 1) AVHRR visible (0.58- 0.68_m) and near-infrared (0.73- 1.1_m)

reflectances and the derived NDVI, 2) passive microwave SSM/I emissivities between

19 and 85 GHz (i. e. from 1.58 cm to 0.35 cm in wavelength), and 3) ERS-1 active

instrument backscattering coefficient at 5.25 GHz (wavelength = 5.71 cm). Actually
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our analysisof SSM/I also uses observations in the visible and infrared (-,, ll#m) to

identify cloud-free scenes and measure surface skin temperatures, but in this study we

do not consider the possible information about the land surface properties that may be

obtained from temperature data.

A year of monthly-mean observations of each instrument is examined, at a spatial

resolution of 0.25 ° x 0.25 °. This spatial resolution was chosen to be appropriate for

global climate studies. The three data sets are described in section 2. Section 3 briefly

reviews the responses of each wavelength range to the land surface characteristics,

as background in interpreting the monthly-mean distribution of the data sets. The

ability of each instrument to discriminate among vegetation types and to capture the

seasonal cycle is analyzed on a global basis (Section 4). The classification of vegetation

by Matthews [1983] is used as a reference. A clustering technique stemming from

Kohonen topological maps is implemented to merge the three data sets and to enable a

synthetic analysis of the respective variations of the spectral bands (section 5). Section

6 concludes this study and suggests potential applications of the clustering technique

for land cover classification.

2. The data sets

This study evaluates globally and routinely available satellite data for their potential

for vegetation characterization with a spatial resolution compatible with climatological

studies. A full ann/ial cycle from July 1992 to June 1993 is analyzed. The three satellite

data sets are mapped on an equal area grid of 0.25°x0.25 ° resolution at the equator and

monthly-mean values are calculated from daily values.

High resolution data from visible and near-infrared (Landsat, Spot) or from

synthetic aperture radar (SAR) have been investigated for local scale studies. However,

because of the large volume of data associated with those high resolution observations

and because of their incomplete coverage on a global and continuous basis, lower



resolution instruments are preferredfor global scalestudies.

The three satellite products are describedin this section along with the Matthews'

vegetation data set. This vegetation classification has been widely used and provides a

test of the ability of the remote sensing instruments to distinguish among vegetation

types.

2.1. Visible and near-infrared reflectances and NDVI from AVHRR

The AVHRR instruments on board the NOAA meteorological polar orbiters provide

daily observations of the Earth with a spatial resolution of up to 1 kin. The first

AVHRR channel is in the visible VIS 0.58-0.68 #m) where chlorophyll causes absorption

of incoming radiation and the se,:ond channel is in the near-infrared (NIR 0.73-1.1 #m).

NDVI is calculated 'as the ratio (,f the difference of the AVHRR channels 2 and 1 over

their sum.

Several AVHRR global data sets have been produced. Monthly AVHRR products

at 8 km resolution are generated under the joint NASA and NOAA Earth Observing

System Pathfinder project [James and Kalluri, 1994]. They are available at NASA

GSFC Distributed Active Archived Center (WFB site http://gsfc.nasa.gov), along

with a description of the data calibration and processing• Correction for Rayleigh

scattering is performed, but there is no atmospheric correction for clouds, water vapor,

aerosols, and ozone. However, NDVI composite maps correspond to the maximum value

of the NDVI for the compositing time period, which tends to minimize atmospheric

contamination [Hol.ben, 1986]. Solar zenith angle dependences are related to both

annual solar cycle and changes in the equator crossing time. They are not accounted

for in the reflectances and can introduce a spurious seasonal variation in the NDVI

signal that may be falsely attributed to vegetation changes [Gutman, 1999]. Gutman

[1999] describes the data set in detail and analyzes its quality. He reviews instrument

performance and satellite orbit characteristics. For NOAA 11. which covers the period



of this study, the anomaliesin the channel1 and 2 reflectancesshould be no more than

+1_ and ___2_, respectively [Gutman, 1999]. Using a simple error propagation equation,

these errors translate into an accuracy of -,_ 0.1 in the NDVI for typical values of the

VIS and NIR reflectances. Several problems are mentioned (inter-sensor calibration,

sensor degradation, satellite drift and changes in the solar zenith angle, contamination

by clouds, water vapor, aerosols, and ozone) that hamper the interpretation of NDVI

as vegetation only. From radiative transfer calculations, T,.zre et al. [1992] carefully

quantify the effect of atmospheric constituents in the VIS and NIR reflectances. Water

vapor absorption essentially affects the NIR reflectances and depresses it by 10-30

% in sparsely ",'egetated areas. That translates into a decrease of up to 0.1 in the

NDVI. Ozone can reduce the reflectance in channel 1 by 5-15% of its value. Aerosols

can completel) masks the vegetation properties with changes up to 0.2 in the NDVI

in densely vegetated areas. Gutman [1999] draws attention to the NDVI problems

and stresses that NDVI investigations, especially those directed at long-term trends,

encounter serious challenges.

In this study, the VIS and NIR reflectances and the NDVI monthly-mean products

are investigated. Data are averaged from their 8 km Pathfinder nominal resolution to

an equal area grid of 0.25 ° x 0.25 ° at the equator.

2.2. Microwave emissivities between l0 and 85 GHz (SSM/I)

The SSM/I instruments on board'the DMSP polar orbiters observed the Earth

twice-daily at 19.35, 22.235, 37.0 and 85.5 GHz with both vertical and horizontal

polarizations, with the exception of 22 GHz which is vertical polarization only [Itollinger

et al., 1987]. The observing incident angle on the Earth is close to 53 °, and the elliptical

fields of view decrease in size proportionally with frequency, from 43x69 to 13x15

km _. Hollinger et al. [1990] provide an evaluation of the instruments and inter-sensor

calibration was examined by Colton and Poe [1999]. Pioneer investigations of the
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sensitivity of passivemicrowaveto vegetationusedlinear combinationsof channels[e. g.

Choudhury and Tucker, 1987] but these simple indices are contaminated by variations

in atmospheric parameters and surface temperature. Microwave emissivities of land

surfaces were recently estimated from SSM/I observations by removing contributions

from the atmosphere, clouds, and rain using ancillary data from the International

Satellite Cloud Climatology Project (ISCCP) [Rossow and Schiffer, 1991" Rossow et

al., 1996] and the National Centers for Environmental Prediction (NCEP analyses)

[Kalnay et al., 1996]. The method is fully described in Prigent et al. [1997, 1998],

and summarized here. Cloud-free SSM/I obs..rvations are first isolated with the help

of collocated visible/infrared satellite observ;.tions (ISCCP data). The cloud-free

atmospheric contribution is then calculated f! om an estimate of the local atmospheric

temperature-humidity profile from NCEP rea.aalysis. The atmospheric contribution

varies from place to place and amounts up t,_ 15% and 50% in the Tropics for 19

GHz and 85 GHz respectively. Finally, with the surface skin temperature derived

from IR observations (ISCCP estimate), the surface emissivity is calculated for all the

SSM/I channels. The standard deviation of the day-to-day variations of the retrieved

emissivities within a month are typically 0.013 for all channels and for their polarization

difference which is a measure of the precision of these estimates. Monthly-mean values

are calculated with a spatial resolution of 0.25 °.

2.3. Microwave backscattering at 5.25 GHz (ERS-1 scatterometer)

The Europeafi .Space Agency (ESA) ERS wind scatterometer operates at 5.25

GHz vertical polarization with a 50 km spatial resolution. General characteristics

and performance of the ERS scatterometer can be found in Frison and Mougin

[1996 a]. The backscattering signal is continuously measured bv three antennas, one

looking normal to the satellite flight path and the other two pointing 45 ° forward

and backward respectively. The instrument scans a 500 km wide swath with viewing
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angles ranging from 18° to 59 °. The ERS scatterometer shares some hardware with

the synthetic aperture radar (SAR) and the SAR and the scatterometer modes are

mutually exclusive. Therefore, over some areas where the SAR is typically on (North

America, Europe), the temporal sampling rate for the scatterometer is lower. With

the scatterometer operating continuously, global coverage would be achieved in about

4 days. The scatterometer response is very stable over time for non-changing targets

and the measurement uncertainty is estimated to be about 5%. Ware, vapor and

cloud absorption/emission are negligible at 5.25 GHz and no atmospheric correction

is required for the scatterometer signal. Frison and Mougin [1996 a] show that the

antenna inter-calibration is very good, which enables the use of all three antennas.

The)." also demonsti'ate that azimuth angle effects are small over vegetated surfaces,

although strong anisotropic signatures are observed over some deserts. For incidence

angles between 250 and 50 °, scatterometer responses can be approximated by a linear

function of the incidence angle. Frison and Mougin [1996 b] compared the scatterometer

responses at various incidence angles and showed that the radar signal at low incidence

angles (<20 ° ) is related to soil characteristics whereas observations at large incidence

angles (-_45 °) provide more information about vegetation. In addition, radar signals at

low incidence angles exhibit a larger scatter and a smaller dynamic range within a year.

Other studies [e. g. W'agner et aI., 1999 a] suggest fitting a model to the slope of the

angular dependence at 40 ° because this parameter is supposed to be less sensitive to

the soil moisture. However, this parameter is very sensitive to noise and several years of

data are required to calculate it.

Following the method developed by Frison and Mougin [1996 a] for each cell on an

equal area grid of 0.25°x0.25 ° at the equator, a linear fit is calculated for all incidence

angles between 25 ° and 50 ° for a month and the fitted value at 450 is kept.
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2.4. Matthews' vegetation classification

Matthews' vegetation and land-use data set was compiled from a large number

of published sources [Matthews, 1983]. At a 1° spatial resolution, the vegetation

classification distinguishes a large number of vegetation types, typically grouped to

30 classes of natural vegetation. Associated with the vegetation classification is a

land-use data set that distinguishes five levels of cultivation intensity, ranging from 0

to 100cA, cultivation. Combining the vegetation and land-use data set gives information

about actual land cover. Table 1 presents Matthews' vegetation classification for the

30-vegetation class¢s along with a simplified 9-class group:ng on the basis of life form.

For each vegetatior class, areas with cultivation intensity of >_ 50% are defined as

cultivation which makes up a tenth class. The vegetation c asses are indicated by Vn for

the 10-class and by vn for the 31-class classification.

3. Brief review of the different wavelength responses to

surface characteristics and presentation of monthly-mean

maps

3.1. Visible, near-infrared reflectances and the NDVI

Green vegetation exhibits a characteristic reflectance curve. Snow-free reflectance

is ,,, C'.05 in the VIS portion of the spectrum (_<0.7 #m) with a steep rise in the NIR

(0.7-1.1 #m) to about 0.20. Seasonally, the rise of full-spectrum albedo from the

beginning to the peak of the growing season is the net effect of two opposing trends

[Bauer and Dutton. 1962; Pinty and Szejwach, 1985]. The spring-summer increase is

governed by declining reflectance in the VIS and increasing reflectance in the NIR.

Full-spectrum albedo declines from the growing season maximum to some lower autumn

value through a reversal of the VIS and NIR trends. These seasonal variations result

in a NIR/\'IS ratio that increases during the growing season and declines abruptly
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at the end of tile growing season.The growing-seasonminimum in the VIS is due

primarily to chlorophyll absorption at ,,-0.65 #m [I{nipling, 1970]. Individual leaves do

not absorb NI1R radiation significantly and NIR reflectance of vegetation canopy is due

to complex interactions within the internal leaf structure and between the leaves, the

canopy structure, and the soil background [Scott et al., 1968; Kniplin9, 1970; Sinclair et

al., 1971" Gausman, 1974]. Colwell [1974] insists on the important role of vegetation

structure, soil reflectance, and observation geometry (especially solar zenith angle)

in understanding and predicting vegetation canopy from NDVI. From ground-based

measdrements, several authors have mentioned the difficulty of .tifferentiating between

vegetation types from reflectances only [Scott et al., 1968; Sinc, air et al., 1971] and

they ;uggest exploring the temporal changes of the reflectances. Tucker [1979] showed

corre ation between the properties of the vegetation canopy and the reflectances (in

the VIS at 0.65 _m and in the NIR), while Scott et aI. [1968] only observed such a

corre!ation in the VIS.

Different combinations of the reflectances in the VIS at 0.65 t_m and the NIR have

been investigated [e. g. Tucker, 1979; Begue and Mvneni , 1996]. They are all sensitive

to the presence of vegetation but are differently affected by changes in soil color and

brightness. ND\'I is the most widely used. It capitalizes on the magnitude of reflectance

differences between spectral bands and on its seasonal variations.

NDVI has been found to be correlated with the fraction of photosynthetically active

radiation (FPAR)absorbed by green vegetation (since it is related to spectral albedo),

to leaf area index (LAI) [e. g. Asrar et al., 1984; Begue and Mvneni, 1996], and to

carbon fixation [Fung et al., 1987], as well as providing information about vegetation

phenology [Moulin et aI., 1997].
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3.2. Passive and active microwave responses over land

Microwave responses of the land surface include contributions from the vegetation

and from the underlying surface. An extensive body of research has been directed toward

a better understanding of the mechanisms responsible for the microwave emission and

backscattering of soil and vegetation, both from theoretical analysis and from small-scale

field experiments using hand-held, truck-mounted, or airborne sensors. A review of

tnese studies is presented by Ulaby et al. [1986] and more recent developments include

modeling by Karam et al. [1995], Wignero _ et al. [1993], Ferrazzoli and Guerriero

[1996] or measurements by Matzler [1990], IVigneron et al. [1997], Heuison [2000].

'Vegetation absorbs, emits and scatters microwave radiation. Radia five properties of

vegetation are mainly driven by the dielectric properties of the vegetation components,

their density, and the relative size of vegetation components with respect to the

wavelength. Dielectric properties of vegetation are closely related to their water content.

Increasing vegetation density usually reduces the emissivity polarization difference

[Choudhury, 1989] and increases the backscattered signal [Mougin and Frison, 1996

a]. Both theory and in situ measurements predict increasing absorption/emission and

scattering by vegetation with increasing frequency, and as a consequence the underlying

surface contribution is expected to increase with decreasing frequency.

Bare soil response depends on soil dielectric properties and roughness. At satellite

resolution, smooth bare soils have a quasi-specular reflection, producing high polarization

emissivity difference" around 50 o incidence and low backscattering coefficient. When the

terrain gets rougher, surface scattering causes the emissivity polarization difference to

decrease and the backscattering coefficient to increase. In dry soil, volume scattering

can be involved producing low radar return [Deroin et al., 199]'] and specific passive

microwave signatures [Prigent et al., 1999].

Water has a high dielectric constant compared to bare soil. For passive

measurements, open water surfaces (lakes, inundated areas) exhibit very low emissivities
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in both horizontal and vertical polarizations alongwith a high polarization difference.

Passivemicrowavemeasurementscan be used to detect inundation [Gidding and

Choudhury, 1989; Sippel et al., 1998]. Active instruments measure low backscattering

coefficients over water surfaces. Microwave emissivities and backscattering coefficients

are also sensitive to soil moisture• Recent investigations includes studies by Owe et al.

[1999] and Vinnikov et al. [1999] for passive microwaves and by Wagner et al. [1999

b] for the active measurements. However, soil roughness and presence of vegetation

are serious challenges for the detection of soil moisture variations. While several in

situ measuremel ts of land surface emissivities and backscattering coefficients have been

conducted, they do not cover the large diversity of surface types on the globe and

extrapolation fro m 'small scale measurements to satellite field of view is not trivial.

3.3. Presentat!on of monthly-mean maps

Figure 1 presents monthly-mean values of NDVI (AVHRR), emissivity polarization

differences at 37 GHz (SSM/I), and scatterometer backscattering coefficients at 5.25

GHz (ERS-1) for August 1992, along with the vegetation classification map for 10

classes. There are qualitative correspondences between the three types of observations

and the vegetation classification.

Desert areas (V9) are characterized by low NDVI, large emissivity differences and

low backscattering coefficients, and are clearly noticeable on each map. Variations of

the backscattering coefficients and the emissivities over desert areas are interpreted in

terms of rock/sand types and topography. Higher values of backscattering and lower

values of emissivity polarization differences are found over high topography in the desert

(Tibesti, Air in the Sahara).

Tropical rain forests display large backscattering coefficients and negligible

emissivity polarization differences. However, the tropical rain forest in Africa shows

rather low NDVI values compared to the rain forest in South America. Grassland and
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woodlandcanalso bedistinguished in Africa and in SouthAmerica. The sharp gradient

southwardof 15°Nin Africa isobservableon all the maps: it corresponds to the Sahelian

transition between arid shrub grassland and more humid grassland with tree cover.

Water surfaces (lakes, rivers, wetlands) show high emissivity polarization differences

at 37 GHz. 2"he major river systerhs (e. g. Congo, Amazon) and wetlands (e. g.

Pantanal in South America) appear clearly on the microwave emissivity map while

they are no' easily detectable on the NDVI or on the backscattering coefficient maps.

With the ERS-1 scatterometer working at 5.25 GHz, one would expect less absorption

by vegetation at 5.25 GHz ERS-1 frequency than at SSM/I higher fl equencies an t a

stronger contribution from the underlying surface. The opposite is observed.

4. Evaluation of the potential of the satellite data sets for

vegetation monitoring

4.1. Ability to distinguish major vegetation classes

Figure 2 represents the histograms of the different observations for 4 major

vegetation types in areas in the northern hemisphere where the cultivation intensity is

_<20_. Evergreen and deciduous forests have been grouped together because during

summer months no significant differences are observed; the same is done for woodland.

The analysis is not restricted to the parameters that are commonly investigated for

vegetation studies (NDVI, emissivity polarization differences) but also includes an

examination of the individual channel responses. For a given observation, the histograms

are normalized to have the same area, giving an estimate of the probability distribution

function.

For AVHRR, from separate channel information (VIS or NIR), only two classes

of vegetation appear to be distinguishable and even these have substantial overlap in

reflectance distributions. Absorption by chlorophyll decreases with the amount of active
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photosynthetic parts in the vegetationand as expectedthe visible reflectanceis lower

for grasslandthan for woodlandand forest. Lowerreflectancescould also be interpreted

in terms of larger fractional coverageby bare soils which have higher VIS reflectances.

There is morevariability in the NII_ than in the VIS. Both the VIS and the NIR signals

saturate for higher biomassdensity: It is not possibleto distinguish betweenwoodland,

forest and rain forest, basedsimply on a month's data. Combining those two pieces of

information in the NDVI helps differentiate woodland from forest, but rain forest and

other forests still appear very similar. Other authors also observed saturation of the

NDVI response for high greet -leaf density [e. g. Tucker, 1985]. There are two peaks in

the woodland histogram for tae NDVI (also seen on the VIS histogram) with the lower

value peak corresponding to e rid East Africa.

For SSM/I, vegetation it,formation is similar at all frequencies. Separating

vegetation via individual SS,_._/I channels (vertical or horizontal polarization) cannot

be done. The emissivity in h_rizontal polarization is lower for grassland than for

tree-covered areas. With decreasing vegetation density, the contribution of bare soil

surfaces within a pixel increases, reducing emissivity in the horizontal polarization. The

emissivity in vertical polarization shows little variation: Emissivities are slightly smaller

for rain forest than for other forested regions, which may be explained by the large

water volume in big leaves inducing significant scattering. However, given the absence of

in situ radiometric measurements over rain forest, this hypothesis cannot be confirmed.

Calculating the emissivity polarization difference helps separate rain forest from other

forest/woodland and from grassland. Nevertheless, discrimination between forest and

woodland is not possible.

With increasing vegetation biomass, the backscattering signal from ERS-1 increases

and the four histograms are rather well separated, except for grassland and with

overlapping between forest and woodland. Given the estimated error of 5%, a -,,4 dB

range between the peaks of tree-covered classes represents a significant vegetation signal
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that is promising for discrimination of vegetation density gradients. The grassland

backscatterhistogram is wide asit is for all other observations(except for the emissivity

in vertical polarization). It evenhas two peaksin the NDVI: the peak with high NDVI

valuescorrespondswell to grasslandwith partial tree cover, while the other peak is

related to locations with less woody cover (see the 31-class vegetation classification in

Table 1). By the same token, forest and woodland classes may also contain partial

coverage by grassland, which might explain the difficulty of separating the grassland

and the woodland/forest classes.

Similar results are obtained in the southern hemisphere, but with more confusion

between forest and woodland.

4.2. Ability to detect the vegetation phenology

For the different observations in the northern hemisphere, Figure 3 shows the

histograms for 6 vegetation types for three months that correspond to different

vegetation stages. Areas where the cultivation intensity is larger than 20°_ are excluded

as are pixels that are snow-covered for at least one of the three months. The snow cover

information comes from the NOAA operational analysis. The mean difference between

August 1992 and February 1993 is indicated, along with its standard deviation.

Rain forests have a stable signature in time for both passive and active microwave

observations; this stability is clear for all months. NDVI responses over rain forest

are unstable, especially in the southern hemisphere (not shown). That has also been

observed by Tucker. et al. [1985] over Africa and they explain their findings by the

specific ecology of the rain forest in Africa compared to the other rain forests elsewhere.

However, the variations in Figure 3 can more probably be attributed to contamination

by atmospheric features such as water vapor and clouds. Gutman [1999] argues that

over rain forest, the NDVI decreases with local zenith angle, driven bv a decrease in the

NIR due to water vapor absorption. High frequency of cirrus contamination over the
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Tropics is alsolikely to inducespuriousNDVI variability. Figure 4 presentsscatterplots

of VIS and NIR reflectances,NDVI, and radar backscatteringversusthe high cloud

amount from ISCCP, for 6° x 6° area in the African rain forest (3S 3N; 17E 23E) and

for a year. NDVI and VIS reflectances show unexpectedly large variances over the year

that are linearly correlated to the amount of high clouds. No such correlation is found

with the NIR and the radar signal, ruling out a possible correlation between high cloud

amount and vegetation characteristics.

With microwave measurements (emissivity polarization differences and the radar

backscattering), the responses are more _:table throughout the year for evergreen

forests (V3) than for deciduous ones (V2_. In tree-covered regions, the emissivity

polarization differerice stays low even in v inter and backscattering coefficient remains

high. Interaction between the microwave signal and the vegetation is not limited to green

leaves in the canopy but includes scatteril g and emission/absorption by woody parts

comprising the structure of the canopy; these results suggest that the leaf contribution

is relatively small. NDVI or individual VIS and NIR channels do not distinguish the

two forest types: The differences in the histograms between months are about the same

for the deciduous and the evergreen forest, and surprisingly, the deciduous forest has

the same signature in August and December.

Especially for grasslands, variations in the NDVI are essentially due to variations

in the NIR and not in the \';IS. Changes in the VIS channel are small over the year and

are of the order 6f-.the measurement noise. For the NIR, seasonal changes are larger,

but they have similar range for all vegetation types except rainforest. As discussed by

Gutman [1999], solar zenith angle variations can be partly responsible for the seasonal

cycle of the reflectances. Water vapor variations can also modulate the signals. Justice

et al. [1991] observed that water vapor absorption in the NIR channel may drive part

of the NDVI seasonal variation, especially over grassland. Tanre et al. [1992] show

that for grassland over Mati. correcting the NDVI from water vapor contamination can



19

increaseit by 0.1 for wet days. C. Brest at NASA Goddard Institute for SpaceStudies

at GISS (personalcommunication) also performed a water vapor correction to AVHRR

data and observed a change of ,-,0.05 in reflectances over tropical areas. Water vapor

induced change in the NDVI is modulated by the water vapor amount, the geometry

of the observation and the surface reflectance itself: simple correction of the NDVI

values cannot be easily implemented and a full treatment of the water vapor absorption

is a requirement for an adequate interpretation ef the reflectances in terms of surface

properties only.

Individual passive microwave channels are not able to capture the seasonal cycle

of any vegetation type and mean differences between maximum and minimum in the

vegetation cvcle is within the noise level (,-, 0.013). However, both the emissivity

polarization difference and the backscattering coefficient show realistic variations within

the year that can be attributed to vegetation seasonality, although the magnitude of the

microwave seasonal response is small, especially for the passive measurements.

4.3. Ability to distinguish between vegetation subclasses

The subdivisions of forests and woodlands (see Table 1) are essentially driven by

climate zone and as a consequence, differences in the signals are not expected from for

instance tropical and temperate evergreen needle-leave forests. That has been verified

but is not shown here.

Separability between broad-leaved and needle-leaved tree-covered areas is very

difficult to assess l_ecause the two leaf types exist in different climate regions. For

instance, evergreen broad-leaved woodland (v13) is concentrated in coastal regions in

Australia while evergreen needle-leaved woodland dominates in Canada above 50°N.

Attributing small signature differences exclusively to leaf type is misleading, given the

large climatological differences between the two regions.

The grassland subclasses (classes 23 to 29 in the 31-class classification) present



2O

different biomassdensities that should havedifferent signaturesin the observations.

Figure 5 showstime seriesof threegrasslandtypes v23 to v25which representgrassland

with decreasingtree cover,in the two hemispheres(seeTable1). With decreasingwoody

coverage,the biomassdensity is lower and oneexpectsto observe:1) increasingvalues

of the polariza,tion.emissivities for passivemicrowave,2) reducedbackscatteringsignal

for radar, and 3) lower NDVI valuesespeciallyduring summermonths. In the southern

hemisphere,thesepatterns are apparent but in the northern hemisphere,differences

betweenv23 and v24 are opposite to what is expectedwith all instruments. In this

case.the vegetation classification may be questioned, i)ifferences between classes 26 to

28 are related to grassland height from tall to short gr;'ssland, which should correspond

to decreasing vegeta'tion density: The expected respon: es are observed with the various

measurements (not shown), but with a lot of scatter. "]'he vegetation classification may

have to be revisited in the light of these satellite measurements, especially in South

America and Africa where land use practices may not be well documented and where

anthropogenic modification of the vegetation on short time scales is occurring.

4.4. A case study: The desert/rain forest transition in Africa

Values of NDVI, ERS-1 backscattering and SSM/I emissivity polarization differences

(Figure 6) are compared for August and February along a cross-section at longitude 20E

that encompasses a strong north-south gradient of vegetation, from the desert in Chad

(latitude 20N) to the rain forest in the Democratic Republic of Congo (latitude ON). In

this region, the vegetation phenology is driven by rainfall, with an increase in the rainy

season duration and in the amount of precipitation from north to south. For specific

sites along the cross section, the annual cycle of the three observations are presented

along with the precipitation cycle as given by the Global Precipitation Climatology

Project from merged infrared and microwave satellite data and gauge measurements

fHuffman _! al.. 1996]. The vegetation type is indicated as given by Matthews' 31-type
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classification. All the variablesare normalized for an easiercomparison(seethe figure

caption).

North of 16.X.the three observationsarestable in time, with low NDVI valuesand

high emissivity polarization differences.The backscattering signatures change abruptly

between 17.X and 18.X: Around 17_, sand dunes induce a very low backscattering

signature because 0f volume scattering in sand, while north of 18N, the backscattering

signal increases with the presence of rocks [FAO-i/NESCO, 1977].

South of 16N, variations between summer ;_nd winter increase for all observations.

From (16N,20E) to (6N, 20E), the seasonal cycle of the various grassland types (from

classes 23 to 25) is well captured by the three types of observations, and the observations

are varying in phase. The vegetation growth is associated with the rainy season, with a

rapid vegetation development as soon as the rainy season starts, and a slow decrease in

the senescence phase. Frison and Mougin [1998] analyzed the respective contributions

of the soil and vegetation in a case study in a semi-arid environment in Northern Sahel

(Mall). concluding that although the soil component is always large, the backscattering

coefficient reflects the vegetation development well. As expected, passive and active

microwave responses are very stable in the rMn forest (see the annual cycle at 1N, 20E).

However, for the same area, NDVI exhibits large variations during the year that cannot

be explained in terms of vegetation.

At specific locations along the cross-section, the SSM/I response shows large

increases in the emissivity polarization differences especially in August during the rainy

season. At 10N for instance, the decrease in the emissivity polarization differences is

related to the Slamat swamps in Chad. The decrease around 13N could be related

to swamps around the Batha river in Chad, but that should be further investigated.

Around 2N in the rain forest, the Congo river and its associated swamps induce

a decrease in the emissivity polarization. There are no significant changes in the

backscattering coefficient nor in the NDVI.
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4.5. Correlation between the three types of observations

Figure 7 represents the scatterplot of all possible pairs of observations, for the

NDVI, the backscattering coefficient, and the emissivity polarization difference at 37

GHz, for four major vegetation types in South America in August. For each scatter

plot, the population contours at 0.2 and 0.5% are drawn.

For the rain forest, the ERS backscattering coefficients show little dispersion, while

the NDVI and the emissivity polarization difference exhibit larger scatter. For the

NDVI, atmospheric contaminations are suspected. Pixels that have large emissivity

polarization differences (>__.01) are co lcentrated in coastal areas an t around the major

river systems (Congo in Africa, the Amazon in South America). Tt is confirms the high

sensitivity of the passive microwave measurements to water surfaces, compared to the

other measurements. Compared to the SSM/I responses, ERS-1 backscattering signal

shows more dynamic range in densely vegetated areas outside wet ar,eas, with population

contours elongated along the backscattering coefficient axis. For emissivity polarization

differences between 0.00 and 0.02, ERS backscattering coefficient varies from -,,-7 dB to

,---12 dB over forest and woodland with lower values of the backscattering coefficients

corresponding to the transition zones between forest/woodland and grasslands. ERS-1

radar signal has the ability to detect density gradients in forested areas. For grasslands,

the backscattering signal and the SSM/I response are almost linearly related, but this is

not true for NDVI. NDVI signal shows a large dynamic for low emissivity polarization

differences and for r'ather high radar signals, while the NDVI reaches saturation for high

emissivity polarization and for low radar signals. Similar behavior has been observed by

Becket and Choudhury [1988], Tucker [1989], among others. Over sparsely vegetated

areas, the large variability of the microwave signals are explained by their sensitivity to

bare soil roughness and moisture. Given that all vegetation types show a large NDVI

variability, it is difficuh to attribute the large dynamic of the NDVI to vegetation

changes alone: It can also be related to atmospheric contamination af the signal.
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5. Merged analysis of spectral variations with clustering

technique

5.1. Description of the clustering technique

In the preceding sections, we analyzed the response of individual spectral band to a

given type of vegetation. We also examined relations between pairs of spectral bands. A

clustering technique has been developed to merge all the data ,'_ets to obtain an analysis

of the variations of one spectral band with respect to the others. At this stage, the

clustering technieue is a tool to help interpret the variability of the channels; it is not

yet optimized for cegetation classification.

Let {X i E R" ; i = 1,..., M} be an observation dataset, where n is the dimension

of the observation (ile. the number of channels in the following) and M the number of

observations (i.e. the number of monthly-mean pixels in the following). The goal of

unsupervised classification algorithms is to classify this data set into subgroups that

optimally describe the statistical variability present in the data, without any a priori

information about actual physical classes. Clustering techniques define A" prototypes (or

clusters) pi that give a discrete description of the continuous observations and optimally

quantify their variability. Each observation X; is associated with the prototype for

which the distance d(X i, pk) is the smallest.

A'ohonen topological feature maps are also called self-organizing topological maps

[A'ohonen, 1982]. The specificity of this algorithm compared to other clustering

techniques is obtained by imposing a neighborhood requirement on the prototypes.

When the algorithm has converged, prototypes corresponding to nearby points on

the feature map grid also have nearby locations in the data space. This additional

information on the extracted prototypes makes it easier to interpret each prototype. The

neighborhood system adopted in this study is a one dimensional ordering of prototypes

where the neighborhood of a prototype is its two nearest neighbor prototypes. This
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neighborhood system is well adapted to the definition of a statistical index that is a

particularly good way to describe the links and the variabilities in the dataset.

The hohonen classification algorithm is applied to a year of monthly-mean

observations for SSM/I, ERS-1, and AVHRR (M=12). Each observation vector

corresponds to one snow-free pixel of 0.25 ° x 0.25 ° has 13 components (n=13) which

are 1) 9 SSM/I derived variables: the emissivities for each polarization and their

polarizaUon difference at 19, 37 and 85 GHz, 2) the ERS-1 backscattering coefficient,

and 3) the AVHRR reflectances in the VIS and NIR and the NDVI. Each observation

in the observation vector is normalized by its mean spatial val lance over a yea,. The

same weight is given to each instrument, meaning that each individual observation is

weighted by a coefficient 1/9 for SSM/I and 1/3 for AVHRR. The number of pr¢,totypes

K is chosen to be 30. The distance d is the absolute value of the difference; compared

to the traditional Euclidien distance, it gives less weight to potential outliers.

5.2. Results of the clustering and joint analysis of the spectral bands

The Kohonen algorithm is applied to estimate the K = 30 clusters, pk that

optimally quanti_" the dataset. After the convergence of the algorithm, each observation

X' is associated with its closest prototype using the distance d. A cluster map is

produced for each individual month; Figure 8 shows the results for August 1992.

Figure 9 represents the n = 13 coordinate values (i.e. the channel observations)

of each prototype P _ with respect to the cluster number, from cluster 1 to cluster

K = 30. The standard deviation of the subgroup of observations associated with each

prototype is added to the figure. For a given prototype, a low standard-deviation in

one channel means that the channel provides good discriminant information in the

clustering solution: the relation between the cluster and the channel is not ambiguous.

On the other hand, a high standard-deviation means that the prototype is relatively

insensitive to the particular channel. Such a high standard deviation could originate
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from instrumental noise or from additional variability that contaminates the channel

and is not related to the surface properties (atmosphere contamination for example).

The number of prototypes I_" has been chosen so that, for each consecutive

prototypes, at least one of the channel is sufficiently statistically discriminant: For this

channel, the difference between the,two prototypes is above the standard-deviation of

subgroups associated with each prototype. The ambiguity between prototypes is thus

limited. As a consequence, on the map, each class shows a good spatial _onsistency.

The variability of each cluster subgroup, which depends on the value and the number of

observations in the subgroup, has been uni(ormly distributed by the'l_ohonen algorithm

in each prototype for an optimal quantific_ tion of the dataset.

The 30 clusters have been separated into three contiguous groups (see Figure

8). The three groups can be associated with arid environments (clusters 1 to 10),

vegetated areas (clusters 11 to 24) and wet regions (clusters 25 to 30). Clusters 11

to 24 can be compared to a vegetation deasity gradient that shows similarities with

Mattheu's" vegetation classification. Although it is not our purpose here to classify

the vegetation, a quick comparison is performed between the clustering results and

Ma_thetr_,' classification for the northern hemisphere in August. 58% of class V1 in

Matthetrs' classification correspond to cluster 24, and 17% are in cluster 25. Forest type

(\:2+V3) has its maximum population in cluster 21, while woodland (V4+VS) has it for

cluster 19.

,5.2.1. Arid environments. Clusters 1 to 3 correspond closely to sandy deserts

[FAO-I/.,\:ESCO, i977] with high reflectances in the VIS and NIR, low backscattering

signals from ERS-1 and large polarization differences for SSM/I. Clusters 4 to 8 have

similar VIS and NIR reflectances, while the backscattering signal increases by --,9 dB

due to increasing surface roughness related to the combined effects of rocky surfaces

and topography. SSM/I polarization differences also decrease with surface roughness.

Clusters 9 and l0 correspond to desert areas in high topography and they show a large
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backscattering signal compared to the surrounding areas. Radar signals have a high

sensitivity to surface roughness that could be used to characterize desert properties,

especially in the context of estimating dust sources [Marticorena et al., 1997].

5.2.2. Vegetated areas. The cluster numbers between 11 and 24 could be

linearly transformed into a multivariate-source index related to vegetation density.

Clusters 11 to 13 are predominantly located in arid areas. From cluster 14 to 24,

NDVI, radar baci, sca tering, and the microwave polarization differences show a smooth

increase corresponding to increasing vegetation density. Changes in the backscattering

signal amount to 6 dB, which is very significant compared to the 5% accuracy of the

measurement. The backscattering standard deviation is very low for these clusters,

indicating that the 'radar signal is the most effective discriminant factor. Although

NDVI increases smoothly, its large standard deviation in these clusters shows that

separation between clusters is not related to its value. NIR does not vary much while

VIS reflectance changes from 0.15 to 0.05. In vegetated areas, emissivities in the

vertical polarization decrease with increasing frequency, which is contrary to what

models predict. This has already been observed and discussed [Pri9ent et al., 2000].

For the horizontal polarization, the emissivities are almost constant except for very

densely vegetated areas. These results reinforce the hypothesis of stronger scattering by

vegetation with scattering increasing with frequency. These signatures will be further

explored with the help of a radiative transfer model [WTgneron et al., 1993].

5.2.3. Wet areas. From cluster 25 to 30, the passive microwave signals vary

drastically with rather low standard deviation while the other variables show smaller

changes with large standard deviations. This confirms the high sensitivity of the

microwave signals to the presence of water and its potential for the detection of

inundated areas. Figure 10 shows the response of the three instruments in the rain forest

over the Amazon for a year. While the passive microwave clearly detects the wetland

surrounding the river and its seasonal cycle, the active microwave instrument only
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respondsto scattering by the vegetation. With increasingfrequency,one expectshigher

attenuation and scattering by vegetationand asa consequencea lowersensitivity to soil

properties. Although operating at a lower frequency,ERS-1scatterometerobservations

show much lesssensitivity to the presenceof inundated areas. This suggeststhat

scattering by the vegetationcould'dominate the radiative transfer processesin the

canopy,exceedingthe absorption/emissioncontribution within the vegetation. Unified

radiative transfer models are now capableof simulating both the emissivity and the

backscatteringresponsesof vegetationand soil [Wigneron et al., 1_93; Kararn et al.,

1995] Using radiative transfer model at 1.5 GHz, Du et al. [2000] attempt to assess

which of the two sensing techniques (passive or active) is less affected by vegetation

cover '_,'hen trying to estimate soil moisture. They conclude that the two sensor types

have s milar sensitivity to vegetation. Joint analysis of the emissivity and backscattering

model responses, compared to ERS and SSM/I observations, will help better understand

the vegetation and soil interaction with the microwave radiation.

6. Conclusion

This study presents a global evaluation and comparison of measurements in the

visible and near-infrared, as well as passive and active microwave for characterizing

vegetation cover and seasonality. It is the first step toward a characterization of the

land surface using multi-satellite observations covering a large spectral range. A year of

monthly-mean observations of AVHRR (NDVI, visible and near-infrared reflectances),

SSM/I (emissivities between 19 and 85 GHz) and ERS-1 (wind scatterometer

backscattering coefficients) was analyzed at a 0.25 ° x 0.25 ° spatiM resolution which is

compatible with climatological studies. The capacity to discriminate various vegetation

types is assessed in the context of the Matthews' vegetation classification, with special

emphasis on the ability to detect the vegetation phenology. A clustering technique

derived from the Kohonen topological maps is developed to merge observations from all
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three instruments and to provide a synthesisof the respectivesensitivities of the various

spectral bands to surface properties.

NDVI varies with vegetation density from -,_ 0.1 to _ 0.7 with an estimated error

of 0.1 and saturates for forested areas. NDVI has a marked seasonal cycle for most

vegetation types that is mostly driven by changes in the near-infrared reflectances, not

by variations in the visible reflectances. Time series over evergreen vegetation show

spurious seasonal variations of up to 0.2 i,_, the NDVI. Significant cirrus contamination

is evidenced over the African tropical forest. Atmospheric contamination (clouds, water

vapor, aerosols, and ozone) and solar zenith angle dependences also alter the signal.

A full correction of the VIS and NIR reflectances for atmospheric contamination is a

requirement in order to interpret the signals in terms of vegetation only. This task has

been undertaken at NASA GISS. Understanding spatial and temporal variations in the

VIS and NIR reflectances is of primary importance for the interpretation and prediction

of the surface albedo, which is a key parameter in the Earth energy budget.

Passive and active microwave observations respond to the absorption/emission and

scattering by vegetation elements including woody parts; they are not directly sensitive

to the green-leaf activity.

Active microwave backscattering observations (ERS-1) are not affected by variations

in atmospheric conditions and do not require significant preprocessing. Measured with

an accuracy of 5%, backscattering signals exhibit a high potential to characterize bulk

vegetation density including green-leaf'and woody structures with _10 dB changes

from rain forest to arid grassland. In contrast to NDVI, they have a stable seasonal

response over evergreen vegetation and show a realistic annual cycle over deciduous

vegetation. In arid places, backscattering measurements are very sensitive to surface

roughness and show very strong signatures over sand dunes, making them a potential

tool for desert studies. Unaffected by atmospheric variability, scatterometers appear to

be very promising instruments for land surface characterization, for their high sensitivity
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to vegetation,and for their potential for desert investigations.

An atlas of microwaveemissivitiesbetween19 and 85 GHz hasbeen calculated

from SSM/I using ancillary data to removeatmosphericcontributions. The resulting

emissivity polarization differencesshowsomeability to characterize vegetation types

but with a smaller dynamic range than ERS-1 observations; values range from -,_ 0.00

for tropical foreststo ~o_.08 for arid grasslands, with an estimated error of ~0.01a.

Vegetation discrimina:ion is not possible from individual polarizations and sensitivity

to vegetation does not vary significantly with frequency. However, passive microwave

measurements exhibit a strong sensitivity to standing water, making it possible to

detect wetlands e'___n in densely vegetated areas. A method to detect the inundated

areas and their exl eat is under development, using both passive and active microwave

instruments, with "l_e active observations helping in the estimation of the attenuation

by the vegetation. Although operating at a lower frequency, ERS-1 scatterometer

observations show much less sensitivity to inundated areas. This suggests that scattering

by the vegetation may dominate the radiative transfer processes in the canopy, exceeding

the absorption/emission contribution within the vegetation. Unified radiative transfer

models are now capable of simuh ring both the emissivity and the backscattering

responses of vegetation and soil [Wigneron et al., 1993; Karam et al., 1995]. Joint

analysis of the emissivity and backscattering model responses, compared to ERS and

SSM/I observations, will help better understand the vegetation interaction with the

microwave radiation.

Matthews' Vegetation classification has been used as a reference in this analysis

and it appears that this classification should be revisited in the light of this study,

especially in transition zones and in semi-arid environments. DeFries et al. [1995]

reviewed the dominant biophysical processes and concluded that among the most

important vegetation characteristics controlling biospheric fluxes are growth form (tree,

shrub, herb) and seasonality of woody vegetation (deciduous. evergreen). Our study
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suggests that a combined analysis of observations from the three instruments may

have the ability to characterize large-scale features of these two vegetation properties.

Unsupervised clustering techniques using Kohonen topological maps helped the joint

interpretation of the various spectral bands but also showed potential for land cover

classification. From this sensitivity analysis, an optimal set of variables can be selected

that are relevant for land cover characterization and a land cover classification can be

performed. Further improvements of the clustering technique will include the use of

observation time series for a year instead of monthly data in order to take into account

the seasonal cycle of each vegetation type and the use of a priori information (altitude,

latitude). Combining observations from the three instruments will make it possible to

benefit from their complementary strengths to extract maximum information about

vegetation biophysical characteristics on a global basis. It will also minimize problems

related to one instrument only and should show a better potential to monitor change

over time from series of benchmark behaviors derived from the suite of instruments.
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Figure 1. August 1992monthly-meansatelliteproductspresentedon anequalareagrid of

0.25° x 0.25 ° at the equator: a) NDVI (AVHRR) from the Pathfinder, b) emissivity polarization

differences (vertical-horizontal) at 37 GHz from SSM/I, c) ERS-1 scatterometer backscattering

coefficient in dB; d) Simplified version of the Matthews [1993] vegetation classification (10

classes) at a spatial resolution of .1° x 1°.

Figure 2. Histograms of the different observations for 4 major vegetation types, for the

northern hemisphere. For a given observation, histograms are normalized to have the same

area. Evergreen and deciduous forests have been grouped, as well as evergreen and deciduous

woodlands. Are only considered pixels _,ith less than 20% cultivation intensity. The number of

pixels is indicated.

Figure 3. For the northern hemisphere and for the different obse"vations, histograms of 6

vegetation types, for three months that correspond to different veget;.tion stages. Areas where

the cultivation intensity is larger than 20% are excluded as well as pix els that are snow covered

for at least one month. The number ofpixels is indicated. Numbers inc icate the mean difference

between August 1992 and February 1993, along with the standard deviations in parenthesis.

Figure 4. Scatterplots of NDVI, VIS and NIR reflectances, and radar backscattering versus

the high cloud amount derived from ISCCP, for 6 ° x 6° in the African r_n forest (3S 3N; 17E

23E) for a year. The correlation coefficient is indicated.

Figure 5. For three grassland types with different woody cover, time series over a year (July

1992- June 1993) of the mean response of three selected observations (AVHRR NDVI, ERS-

1 scatterometer backscattering coefficient in dB, SSM/I emissivity polarization difference at

37 GHz). The standard deviation is also plotted. Pixels that are snow covered for at least

one month du{ing the year are excluded. Results are presented for the northern and southern

hemispheres and the number of pixels is indicated.
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Figure 6. Comparisonsof AVHRR NDVI, ERS-1 backscattering coefficient, and SSM/I emis-

sivity polarization difference at 37 GHz along a cross section at 20E from 20N to the equator,

for August 1992 and February 1993. The vegetation class in Matthews' classification is indicated

for each degree. For 5 specific sites along the cross section, the full seasonal cycle is given with

the precipitation rate in mm/day extracted from the GPCP data set. For comparison purposes,

all the values are normalized between 0 and 1 that corresponds to variations from 0 to 1 for the

NDVI, from -26 dB to -6 dB for the ERS-1 backscattering coefficient, from 0.15 to 0.0 for the

SSM/I emissivity polarization difference, and from 0ram/day to 12ram/day for the rain rate.

Figure 7. Scatterplots of all possible pairs of observations for the AVHRR NDVI, th,. ERS-1

backscattellng coefficient and the SSM/I emissivity polarization difference at 37 GHz for four

major vege:atio.n types. Results are presented for the southern hemisphere, during summer

(February i993). For each scatter plot, the population contours at 0.5% and 0.2% are drawn.

Figure 8. _or August 1992, cluster map derived from the Kohonen scheme.

Figure 9. For each observation, value of the prototype in each cluster (solid line), along

with the standard deviation around this prototype in the cluster (dashed line). For passive

microwaves, standard deviations are indicated for 19 GHz only. The standard deviations for

the other channels are similar.

Figure 10. Response of each instrument over wetlands in the Amazon rain forest, for every

other month between July 1992 and June 1993. The precipitation is also indicated as given by

GPCP.



Table 1. Vegetation Types

Vegetation types

31 10 Pixels Pixels

classes classes N hem. S hem.
Description

1 1 5942 10149

2 3 3654 621

3 1 0 231
4 3 0 479
5 3 780 134

6 5 322 236

7 3 618 0

8 3 I1921 0

9 2 1823 1647

10 2 5559 95

11 2 4598 0

12 8 718 2624

13 5 695 1408

14 5 3227 0

15 4 1767 3438
16 4 3240 0

17 8 1357 272
18 8 817 41

19 8 844 214

20 8 601 0

21 8 6258 5279

22 7 9482 8

23 6 3781 4587

24 6 3168 1808

25 6 8839 3374

26 6 598 438

27 6 560 436

28 6 4872 2724

29 6 359 0
30 9 18187 1934

31 10 24965 2896

tropical evergreen rain forest, mangrove

tropical/subtropical evergreen seasonal broadleaved forest

subtropical evergreen rmnforest
temperate/subpol_r evergreen rdnforest
temperate evergreen seasonal broadleaved forest, summer rain

evergreen broadleaved sclerophyllous forest, winter rmn

tropical/subtropical evergreen needleleaved forest
temperate/subpolar evergreen needlelesved forest
tropical/subtropical drought-deciduous forest
cold-deciduous forest, with e,ergreens
cold-deciduous forest, withot, t evergreens
xeromorphic forest/woodland
evergreen broadleaved scleroI hyllous woodhmd
evergreen needleleaved woodland
tropical/subtropical drought-deciduous woodlan,,
cold-deciduous woodland

evergreen broadleaved shrubland/thicket and d_ _ shrubland
evergreen needleleaved or microphyUous shrubla_ d/thicket

drought-deciduous shrubland/thicket and dwarf ._hrubland/thicket

cold-deciduous subalpine/sub:_olar shrubland and dwarf shrubland
xeromorphic shrubland/dwarf shrubland

arctic/alpine tundra/mossy bog

tall/medium/short grassland with 10-40% tree c_,ver
tall/medium/short grassland with <10% tree or _uft-plant cover
tall/medium/short grassland with shrub cover
tall grassland, no woody cover
medium grassland, no woody cover
meadow/short grassland, no woody cover
forb formation

desert (bare soil)
cultivation

The 31 vegetation classes are defined by Matthews [1983]. The number of equal area pixels of 0.25 ° x 0.25 ° at the equator

is indicated for each vegetation type and for each hemisphere. Each pixel surface is 773 krn 2. The 10-class vegetation
classification is also defined, in relation to the Motthews' original classification.
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